参考文献 References
[1] 史会剑, 朱大伟, 胡欣欣, 等. 印染废水处理技术研究进展探析[J]. 环境科学与管理, 2015, 40(2) : 74-80.
[2] 杨少红. 印染行业废水特征及处理工艺应用探讨[J]. 环境影响评价, 2016, 38(1): 69-71.
[3] 潘铁山, 徐静, 接晓婷. 组合工艺处理不同浓度印染废水的研究进展[J]. 江西化工, 2018, (5): 9-13.
[4] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-97.
[5] 姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理, 2021, 6(41): 77-87.
[6] 薛罡. 印染废水治理技术进展[J]. 工业水处理, 2021, 41(9): 10-17.
[7] A. Sonune and R. Ghate, “Developments in wastewater treatment methods,”Desalination, vol. 167, pp. 55-63, 2004.
[8] T. Robinson, B. Chandran, and P. Nigam, “Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents,”Bioresource technology, vol. 84, no. 3, pp. 299-301, Septemer 2002.
[9] 张颖, 李光明, 陈玲, 等. 活性炭再生技术的发展[J]. 化学世界, 2001(8): 441-444.
[10] 邱立平, 陈京英, 刘永正, 等. 曝气生物滤池处理机理及反冲洗控制研究进展[J]. 济南大学学报(自然科学版), 2010, 24( 2): 216-220.
[11] 代学民, 李亚楠, 任淑萍. 曝气生物滤池深度处理印染废水技术研究现状及发展趋势[J]. 染整技术, 2017, 39(7): 53-56.
[12] 赵耀阳, 王语嫣, 陈红兵, 等. 曝气生物滤池影响因素及脱氮除磷研究进展[J]. 广东化工, 2024, 51(18): 132-134.
[13] 唐国民, 李良玉, 宋晶晶, 等. 过氧化氢/臭氧-曝气生物滤池深度处理造纸废水生化出水[J]. 中国造纸, 2023, 42(11): 91-95.
[14] 凌晨, 宁洪良, 赵立新, 等.串联曝气生物滤柱对麦芽酚废水深度净化研究[J]. 天津理工大学学报, 2023, 39(05): 15-20.
[15] 杨明, 刘琪, 孙健, 等. 印染废水深度处理研究及应用进展[J]. 净水技术, 2020, 39(10): 109-115.
[16] 麦建波, 江栋, 范远红, 等. 我国环保新常态下的印染废水提标改造现状与趋势[J]. 染整技术, 2016, 38(2): 58-61.
[17] 罗丹, 郭丽潇, 郝全爱, 等. 芬顿氧化法处理氧化性泡沫去污废液中的有机物[J]. 核化学与放射化学, 2024, 46(02): 170-176.
[18] 宋继梅. 光催化降解处理印染废水研究进展[J]. 印染助剂, 2018, 35(9): 5-9.
[19] 杨烨鹏, 李懿舟, 王家强, 等. 光催化技术在处理废水中的规模化应用[J]. 云南大学学报(自然科学版), 2019, 41(3): 565-571.
[20] 景新军, 蔡大牛, 李斌等. 印染废水深度处理技术进展[J]. 水处理技术, 2022, 6(48): 13-19.
[21] 陈广华. 臭氧深度处理印染废水工程实例[J]. 染整技术, 2019, 041(003): 59-61.
[22] 杨尚源, 林靖华, 黄燕, 等. 电解催化氧化法废水处理机制研究[J]. 环境工程学报, 2017, 11(1) : 237-243.
[23] 新疆纺织印染工业废水排放与综合利用模式探讨[J]. 新疆环境保护, 2020, 42(3): 40-45.
[24] Balapure K, Jain K, Bhatt N, et al. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process[J]. International Biodeterioration & Biodegradation, 2016, 106: 97-105.
[25] Sponza D T. Necessity of toxicity assessment in Turkish industrial discharges(Examples from metal and textile industry effluents)[J]. Environmental Monitoring and Assessment, 2002, 73(1): 41-66.
[26] Akhtar M F, Ashraf M, Javeed A, et al. Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 502-507.
[27] Balapure K, Jain K, Bhatt N, et al. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process[J]. Internationa Biodeterioration & Biodegradation, 2016, 106: 97-105.
[28] Liang Jieying, Ning Xunan, Sun Jian, et al. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand[J]. Ecotoxicology and Environmental Safety, 2018, 166: 56-62.
[29] Croce R, Cina F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144: 79-87.
[30] Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717:19.
[31] Tara N, Iqbal M, Khan Q M, et al. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent[J]. Water Environment Journal, 2019, 33(1): 124-134.
[32] Sreedharan V, Krithishna K V, Nidheesh P V. Removal of chromium and iron from real textile wastewater by sorption on soils[J]. Journal of Hazardous Toxic and Radioactive Waste, 2017, 21(4): 6017002.
[33] Ghorbani M, Eisazadeh H. Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash [J]. Composites Part B-Engineering, 2013, 45(1):1-7.
[34] Mubashar M, Naveed M, Mustafa A, et al. Experi mental investigation of Chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater[J]. Water, 2020, 12(11):2-5.
[35] Abu-Ghunmi L N, Jamrah A I. Biological treatment of textile wastewater using sequencing batch reactor technology[J]. Environmental Modeling & Assessment, 2006, 11(4): 333-343.
[36] Prabha S, Ramanathan A L, Gogoi A, et al. Suitability of conventional and membrane bioreactor system in textile mill effluent treatment[J]. Desalination and Water Treatment, 2015, 56(1): 14-23.
[37] 李琦. 水体中重金属(Cu2+、Cr6+和Cd2+)联合对斑马鱼成鱼的生物毒性效应[D]. 山东: 山东农业大学,2023.
[38] 赵霞, 罗培松, 相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测, 2016, (14): 91-97.
[39] 国家环境保护部. 纺织染整工业水污染物排放标准, GB4287-2012[S]. 北京: 中国标准出版社, 2012.
[40] 杨永利. 浅谈纺织印染助剂中的非离子表面活性剂的生产工艺[J]. 中国科技博览, 2016(2): 73-73.
[41] 徐世美, 张淑芬, 杨锦宗. 表面活性剂在纺织染整中的应用[J]. 日用化学品科学, 2002(6): 18-23.
[42] He Xiwei, Qi Zhaodong, Gao Jie, et al. Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems[J]. Water Research, 2020, 184: 116137.
[43] Villegas-Navarro A, Gonzaiez M C R, Lopez E R. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters[J]. Environment International, 1999, 25(5): 619-624.
[44] 李磊, 蒋玫, 沈新强, 等. 印染排放尾水对几种海洋生物幼体的毒性研究[J]. 上海海洋大学学报, 2015(24): 712-718.
[45] 国家环境保护局. 污水综合排放标准, GB 8978-1996[S]. 北京: 中国标准出版社, 1996.