期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in Resources and Environmental Science. 2025; 4: (1) ; 1-15 ; DOI: 10.12208/j.aes.20250001.

Ecological risk assessment of soil heavy metals based on different reference value and methods
基于不同参比值和方法的土壤重金属污染生态风险评估

作者: 杨如婷1, 江落雁1, 张池1, 钟嘉劲1, 蒋成爱1,2 *

1 华南农业大学资源环境学院 广州广东
2 广东省农业农村污染治理与环境安全重点实验室 广州广东

*通讯作者: 蒋成爱,单位: 华南农业大学资源环境学院 广州广东 广东省农业农村污染治理与环境安全重点实验室 广州广东;

发布时间: 2025-01-25 总浏览量: 211

摘要

快速发展的涉重金属企业不断排放的大量废弃物造成了严重的土壤重金属污染,威胁到农业生产、生物多样性以及人体健康。复杂多样的土壤生态系统生物受体对重金属污染的毒性效应响应也是各不相同,这使土壤生态风险评估的风险阈值的确定变得异常艰难,从而导致了土壤生态风险评估的实施难以有效进行。本论文使用不同参比值进行生态风险评估,探讨简易有效的生态风险评估方法。本文对国内外有关土壤重金属生态毒理的文献进行梳理,得到部分重金属的5%危害浓度(HC5)和对大麦的10%抑制效应浓度(EC10)等数据;并采集了广东地区20个涉重金属企业场地周边污染程度不同的土壤20个,分别用GB15618-2018中规定的水田和非水田条件下的风险筛选值、重金属的HC5和对大麦的EC10值作为参比阈值计算它们的风险商,并用背景值和风险筛选值作为参比值分别计算潜在生态风险指数。主要研究结果如下:梳理了一些重金属和类金属的生态毒理研究结果,并尝试用于土壤生态评价中。20个样本的不同参比值计算的4种风险商值和2种潜在生态风险值之间均呈现出极显著相关(P<0.01)。以重金属的HC5和对大麦的EC10值作为参比阈值计算它们的风险商和以背景值和风险筛选值作为参比值计算潜在风险指数得到20个样品中极高风险的占比分别为40%、35%、75%和45%;在污染比较普遍的情况下,使用背景值做参比计算的潜在生态风险指数值偏高,大大增加了重金属污染生态风险管控的范围和成本。在污染物的HC5难以获得的情况下,用大麦EC10作为参比值计算风险商乘4倍所得值土壤重金属污染风险商,单个元素的土壤风险商按<1、1-2、2-4和>4分别定义为轻微风险、中等风险、强风险、极强风险级别,可以进行相对更精细化的生态风险评估。(图3 表5 参59)

关键词: 土壤生态毒理;重金属;风险阈值;风险评估;大麦种子发芽率EC10

Abstract

The wastes discharge from rapidly developing heavy metal-related enterprises resulted in serious soil heavy metal pollution, threatening agricultural production, biodiversity and human health. The response of complex and diverse soil ecosystem to the toxic effects of heavy metal pollution varied variously, which makes it extremely difficult to determine the risk threshold for soil ecological risk assessment, leading to difficulties in effectively implementing soil ecological risk assessment. This paper explored simple and effective methods for ecological risk assessment based on the different reference values. This paper reviewed domestic and foreign literature on soil heavy metal ecotoxicology, 5% hazardous concentration (HC5) and 10% inhibitory effect concentration (EC10) of heavy metals on barley were collected;and 20 soils with different pollution levels around 20 heavy metal-related enterprises in Guangdong were collected. The risk quotient of 20 sampled soils were calculated based on the different risk thresholds respectively including risk screening value of paddy field and non-paddy field in GB15618-2018, HC5 and EC10 values of barley above. At the same time, the potential ecological risk index of 20 sampled soils were calculated with background value and risk screening value in GB15618-2018 respectively. The main results are as follows: The soil ecotoxicological results of some heavy metals and As were reviewed and explored in soil ecological evaluation. The four risk quotients and the two potential ecological risk values of 20 samples showed significant correlation. Using HC5 of heavy metals and EC10 of barley as reference thresholds to calculate their risk quotient and background value and risk screening value as reference ratios to calculate potential risk index, the proportion of extremely high risk in 20 samples was 40%, 35%, 75% and 45%, respectively. In the case of widespread pollution, the potential ecological risk index value calculated by using background value as a reference is high, which greatly increases the scope and cost of ecological risk control of heavy metal pollution. In the case that HC5 of pollutants is difficult to obtain, the soil risk quotient is calculated by using barley EC10 as the reference ratio and multiplied by 4 times. The soil risk quotient of single element is defined as slight risk, medium risk, strong risk and extremely strong risk according to <1, 1-2, 2-4 and >4 respectively, which can be used for relatively more refined ecological risk assessment. This study shows that barley EC10 can be used as a risk threshold for preliminary soil ecological risk assessment and the basis to screen soil priority control pollutants for heavy metal-related enterprises.

Key words: Soil ecotoxicology; Heavy metals; Risk threshold; Ecological risk assessment

参考文献 References

[1] 任宇, 曹文庚, 肖舜禹, 等,  2024. 重金属在土壤中的分布、危害与治理技术研究进展[J]. 中国地质, 51(01): 118-142.

[2] REN Y, CAO W G, XIAO S Y, et al., 2024. Research progress on distribution, harm and control technology of heavy metals in soil[J]. Geology in China, 51(1): 118-142.

[3] 尧一骏. 2016. 我国污染场地治理与风险评估. 环境保护, 44(20): 25-28.

[4] YAO Y J. 2016. Risk assessment and remediation of soil contamination in China. Environmental Protection, 44(20): 25-28.

[5] 王美娥, 丁寿康, 郭观林, 等, 2020. 污染场地土壤生态风险评估研究进展[J]. 应用生态学报, 31(11): 3946-3958.

[6] WANG M E, DING S K, GUO G L, et al., 2020. Advances in ecological risk assessment of soil in contaminated sites. Chinese Journal of Applied Ecology[J], 31(11): 3946-3958.

[7] SHI J D, ZHAO D, REN FT, et al., 2023. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Science of the Total Environment, 871: 161768.

[8] HAKANSON L, 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 14, 975–1001.

[9] 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 31(02): 112-115.

[10] XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of Heavy Metals’Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index[J]. Environmental Science & Technology, 31(02): 112-115.

[11] 张霖琳,金小伟,王业耀, 2020. 土壤污染物的生态毒理效应和风险评估研究进展[J].中国环境监测,36(06):5-13.

[12] ZHANG L L, JIN X W, WANG Y Y, 2020. Research Progress on Ecotoxicological Effects and Risk Assessment of Soil Pollutants[J]. Environmental Monitoring in China, 36(06): 5-13.

[13] 邵元虎, 张卫信, 刘胜杰, 等, 2015. 土壤动物多样性及其生态功能[J]. 生态学报, 35(20): 6614-6625.

[14] SHAO Y H, ZHANG W X, LIU S J, et al., 2015. Diversity and function of soil fauna. Acta Ecologica Sinica, 35(20): 6614-6625.

[15] 生态环境部,2024. 关于征求《生态安全土壤环境基准制定技术指南(征求意见稿)》等三项国家环境保护标准意见的函[EB/OL]. [2024-06-02]. https://www.mee.gov.cn/ xxgk2018/xxgk/xxgk06/201808/t20180803_629807.html.

[16] Ministry of Ecology and Environment. Letter on soliciting opinions on three national environmental protection standards, including the Technical Guidelines for the Formulation of Ecological Safety Soil Environmental Benchmarks (Draft for Comment) [EB/OL]. [2024-06-02]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201808/t20180803_629807.html.

[17] PERSICO F, COULON F , LADYMAN M, et al., 2022. Development of an environmental hazard-based rating assessment for defence-related chemical compounds in ecological soil systems[J]. Environment international, 166:107392.

[18] 鲍士旦,2000. 土壤农化分析[M]. 3版. 北京:中国农业出版社.

[19] BAO S D. Soil and agricultural chemistry analysis[M]. 3rd Edition. Beijing: China Agriculture Press, 2000.

[20] 生态环境部, 2018.土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团.

[21] Ministry of Ecology and Environment, 2018. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618-2018 [S]. Beijing: China Environmental Publishing Group.

[22] 李婷婷, 刘子宁, 贾磊, 等, 2021. 广东韶关地区土壤环境背景值及其影响因素[J]. 地质学刊, 45(03): 254-261.

[23] LI T T, LIU Z N, JIA L, et al., 2021. Analysis on background value of soil elements and influencing factors in Shaoguan, Guangdong Province[J]. Journal of Geology, 45(03): 254-261.

[24] 丁昌峰, 李孝刚, 王兴祥, 2015. 我国两种典型土壤汞的安全阈值研究——以根茎类蔬菜为例[J]. 土壤, 47 (02): 427-434.

[25] DING C F, LI X G, WANG X X, 2015. Food Safety Thresholds of Mercury for Two Typical Soils of China——A Case Study for Rootstalk Vegetables[J]. Soils, 47 (02): 427-434.

[26] HUANG X, LI X, ZHENG L, et al., 2024. Comprehensive assessment of health and ecological risk of cadmium in agricultural soils across China: A tiered framework[J/OL]. Journal of Hazardous Materials, 465: 133111.

[27] 丁昌峰, 周志高, 王玉荣, 等, 2024. 基于生态安全的我国土壤镉环境基准研究[J]. 地学前缘, 31(02): 130-136.

[28] DING C F, ZHOU Z G, WANG Y R, et al., 2024. Environmental criteria of cadmium in soils of China based on ecological safety[J]. Earth Science Frontiers, 31(02): 130-136.

[29] 王晓南, 刘征涛, 王婉华, 等, 2014. 重金属铬(Ⅵ)的生态毒性及其土壤环境基准[J]. 环境科学, 35(08): 3155-3161.

[30] WANG X N, LIU Z T, WANG W H, et al., 2014. Ecotoxicological Effect and Soil Environmental Criteria of the Heavy Metal Chromium(Ⅵ)[J]. Environmental Science, 35(08): 3155-3161.

[31] 张竞元, 王学东, 梁力川,等,2024.土壤中钴的生态安全阈值初步推导[J/OL]. 地学前缘, 1-11[2024-06-02]. https://doi.org/10.13745/j.esf.sf.2023.11.40.

[32] ZHANG J Y, WANG X D, LIANG L C, et al., 2024. Preliminary derivation of ecological safety threshold of cobalt in soil[J/OL]. Earth Science Frontiers, 1-11[2024-06-02]. https://doi.org/10.13745/j.esf.sf.2023.11.40.

[33] 黄兴华, 李勖之, 王国庆, 等, 2022. 保护陆生生态的土壤铜环境基准研究[J]. 中国环境科学, 42(10): 4720-4730.

[34] HUANG X H, LI X Z, WANG G Q, et al., 2022.Study of soil environmental criteria of copper for protection of terrestrial ecosystem[J]. China Environmental Science, 42(10): 4720-4730.

[35] 王小庆, 韦东普, 黄占斌等, 2013. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 33(06): 1787-1794.

[36] Wang X Q, Wei D P, Huang Z B, et al., 2013. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 33(6): 1787-1794.

[37] 鞠鑫, 2016. 锑对不同植物的毒理效应及其土壤生态基准研究[D]. 北京:华北电力大学.

[38] JU X, 2016. The toxicological effects of antimony on different plants and its soil ecological criteria[D]. Beijing: North China Electric Power University

[39] 孙在金, 赵淑婷, 林祥龙, 等, 2018. 基于物种敏感度分布法建立中国土壤中锑的环境基准[J]. 环境科学研究, 31 (04): 774-781.

[40] SUN Z J, ZHAO S T, LIN X L, et al., 2018. Deriving soils environmental criteria of antimony in China by species sensitivity distributions[J]. Research of Environmental Sciences, 31(4): 774-781.

[41] 王小庆, 韦东普, 黄占斌, 等, 2012. 物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J]. 农业环境科学学报, 31(01): 92-98.

[42] WANG X Q, WEI D P, HUANG Z B, et al., 2012. Application of Species Sensitivity Distribution in Deriving of Ecological Thresholds for Nickel in Soils[J]. Journal of Agro-Environment Science, 31(01): 92-98.

[43] 李勖之, 孙丽, 杜俊洋, 等, 2022. 农用地土壤重金属锌的生态安全阈值研究[J]. 环境科学学报, 42(07): 408-420.

[44] LI X Z, SUN L, DU J Y, et al.,2022. Soil ecological safety thresholds for zinc in agricultural land[J]. Acta Scientiae Circumstantiae, 42(7): 408-420.

[45] 林蕾, 2013. 基于不同终点测定土壤中锌的毒性阈值、预测模型及田间验证[D]. 中国农业科学院.

[46] LIN L, 2013. Study of Zn-toxicity thresholds in soils with different bioassay endpoints, its predictive models and field validation[D]. Chinese Academy of Agricultural Sciences.

[47] ZHAO S, QIN L, WANG L, et al.,2022. Ecological risk thresholds for Zn in Chinese soils[J/OL]. Science of The Total Environment, 833: 155182.

[48] 万亚男, 2020. 我国土壤中锌的生态阈值研究[D]. 中国农业科学院.

[49] WANG Y N, 2020. Ecological thresholds for Zinc in Chinese soils[D]. Chinese Academy of Agricultural Sciences.

[50] 李宁, 2016. 基于不同终点测定土壤铅的生态风险阈值及其预测模型[D]. 中国农业科学院.

[51] LI N, 2016. The toxicity thresholds (ECx) of Pb and its predicted models based on various endpoint determination[D]. Chinese Academy of Agricultural Sciences.

[52] 李勖之, 郑丽萍, 张亚, 等, 2021. 应用物种敏感分布法建立铅的生态安全土壤环境基准研究 [J]. 生态毒理学报, 16(01): 107-118.

[53] LI X Z, ZHENG L P, ZHANG Y, et al., 2021. Derivation of ecological safety based soil quality criteria for lead by species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 16(01): 107-118.

[54] QIN L, SUN X, YU L, et al., 2023. Ecological risk threshold for Pb in Chinese soils[J/OL]. Journal of Hazardous Materials, 444: 130418.

[55] 高凡, 王学东, 罗小绒, 等, 2022. 不同性质土壤中钼的植物毒性及预测模型[J]. 农业资源与环境学报, 39(4): 683-689.

[56] GAO F, WANG X D, LUO X R, et al., 2022. Phytotoxicity and prediction models of molybdenum in soils with different properties[J]. Journal of Agricultural Resources and Environment, 39(4): 683-689.

[57] MCGRATH S P, MICO C, ZHAO F J, et al., 2010. Predicting molybdenum toxicity to higher plants: estimation of toxicity threshold values[J]. Environmental Pollution, 158(10):3085-3094.

[58] GESTEL C A M V, BORGMAN E, VERWEIJ R A, et al., 2011. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates[J]. Ecotoxicology & Environmental Safety, 74(1):1-9.

[59] 王亚利,2019. 砷胁迫下蚯蚓的应激响应及对土壤理化性质的影响研究[D]. 上海交通大学.

[60] WANG Y L, 2019. Stress response of earthworm to arsenic pollution and its effects on soil physical and chemical properties[D]. Shanghai Jiaotong University.

[61] 李淳, 朱江, 2018. 砷对赤子爱胜蚓的急性毒性效应研究[J]. 上海环境科学, 37(2): 51-54.

[62] LI C, ZHU J, 2018. A Study on the Acute Toxic Effects of Arsenic on Eisenia fetida[J]. Shanghai Environmental Sciences, 37(2): 51-54.

[63] ZHAO S Q, NI H, LI J, et al.,2023. Ecotoxicity stress and bioaccumulation in Eisenia fetida earthworms exposed to vanadium pentoxide in soil[J]. Environmental Science and Pollution Research, 30(19): 54657-54665.

[64] 王子萱, 陈宏坪, 李明, 等, 2019. 不同土壤中镉对大麦和多年生黑麦草毒性阈值的研究[J]. 土壤, 51(6): 1151-1159.

[65] WANG Z X, CHEN H P, LI M, et al., 2019.  Toxicity thresholds of cadmium to barley and perennial ryegrass as determined by root-elongation and growth tests in soils[J]. Soils, 51(6): 1151-1159.

[66] 付平南, 贡晓飞, 罗丽韵, 等, 2020. 不同价态铬和土壤理化性质对大麦根系毒性阈值的影响[J]. 环境科学, 41 (05): 2398-2405.

[67] FU P N, GONG X F, LUO L Y, et al.,2020. Toxicity of chromium to root growth of barley as affected by chromium speciation and soil properties[J]. Environmental Science, 41(05): 2398-2405.

[68] SUN X, QIN L, WANG L, et al., 2022. Aging factor and its prediction models of chromium ecotoxicity in soils with various properties[J/OL]. Science of The Total Environment, 847: 157622.

[69] Ma Y B, MCLAUGHLIN M J, ZHU Y G, et al.,2009. Final Report for Metals in Asia [R]. Beijing: National Natural Science Foundation of China. 23-25.

[70] LI B, ZHANG H, MA Y, et al., 2011. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J/OL]. Ecotoxicology and Environmental Safety, 74(3): 459-466.

[71] MICÓ C, LI H F, ZHAO F J, et al., 2008. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L. ) in different soils[J]. Environmental Pollution, 156(3): 883-890.

[72] 李金瓶, 王学东, 马虹, 等,2020. 土壤外源钴对大麦根伸长的毒害及其预测模型. 农业环境科学学报,39(12): 2771-2778.

[73] LI J P, WANG X D, MA H, et al., 2020. The effect of toxicity of soil supplemented with cobalt on barley root elongation and cobalt toxicity prediction models[J]. Journal of Agro-Environment Science, 39(12): 2771-2778.

[74] QIN L, WANG M, ZHAO S, et al., 2021. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties[J/OL]. Ecotoxicology and Environmental Safety, 228: 112999.

[75] 陈世宝,林蕾,魏威,等,2013. 基于不同测试终点的土壤锌毒性阈值及预测模型[J]. 中国环境科学, 33 (05): 922-930.

[76] CHEN S B, LIN L, WEI W, et al., 2013. Comparative study of Zn-toxicity thresholds in 16 Chinese soils as determined by different bioassay endpoints and its predicted models[J]. China Environmental Science, 33(05): 922-930.

[77] 魏威, 2012. 土壤外源锌的植物毒害主控因子和预测模型研究[D]. 西北农林科技大学.

[78] WEI W, 2012. Zinc phytotoxicity as affected by soil properties and development of a predictive model[D]. Northwest A&F University.

[79] 李丹, 袁涛, 郭广勇, 等, 2007. 我国不同土壤铜的生物可利用性及影响因素[J]. 环境科学与技术, (08): 6-9+115.

[80] LI D, YUAN T, GUO G Y, et al., 2007. Bioavailability and impact of copper in various soils[J]. Environmental Science and Technology, (08): 6-9+115.

[81] QIN L, WANG L, SUN X, et al.,2022. Ecological toxicity (ECx) of Pb and its prediction models in Chinese soils with different physiochemical properties[J/OL]. Science of The Total Environment, 853: 158769.

[82] 李宁, 郭雪雁, 陈世宝, 等,2015. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报,26(07):2177-2182.

[83] LI N, GUO X Y, CHEN S B, et al., 2015. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test[J]. Chinese Journal of Applied Ecology, 26(07): 2177-2182.

[84] POSTHUMA L, SUTER G W, TRAAS T P,2001. Species Sensitivity Distributions in Ecotoxicology[M]. CRC press:5-7.

[85] 张鹏,2020. 基于不同终点的土壤中锑的生态毒性阈值研究[D]. 山西农业大学.

[86] ZHANG P, 2020. Ecological threshold for antimony in soils based on different bioassay endpoints[D]. Shanxi Agricultural University.

[87] LIN X, HE F, SUN Z, et al., 2020. Influences of soil properties and long-time aging on phytotoxicity of antimony to barley root elongation[J]. Environmental Pollution, 262: 114330.

[88] 马建华, 王晓云, 侯千, 等,2011. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究,30(03):486-495.

[89] MA J H, WANG X Y, HOU Q, et al., 2011. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical research, 30(03): 486-495.

[90] 望兆博,任大军,肖宇伦,等, 2023.大冶古铜矿遗址周边农田土壤重金属污染及潜在生态风险评价[J/OL].金属矿, 569(11):290-298.

[91] WANG ZB, REN DJ, XIAO YL, et al. Assessment of heavy metal pollution and potential ecological risk of farmland soil around. 

[92] ancient copper mine site in Daye city. Metal mine, 2023,569(11):290-298.

[93] 黄钟霆,易盛炜,陈贝贝,等.2022.典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价.环境科学, 43(2):975-983. 

[94] HUANG Z T,YI SW,CHEN BB, et al.,2022. Pollution properties and ecological risk assessment of heavy metals in farmland soils and crops around a typical manganese mining area. Environmental Science, 43(2):975-983. 

[95] 李华翔,赵修军,刘应华,等,2022. 冶炼场地土壤中钨空间分布特征及风险评价[J]. 环境工程, 40(1):141-147.

[96] LI HX, ZHAO XJ, LIU YH, et al., 2022.  Spatial distribution and risk assessment of tungsten pollution of soil in a smelting site. Environmental engineering, 40(1):141-147.

[97] ZHENG XJ, CHEN M, WANG JF, et al., 2020. Ecological risk assessment of heavy metals in the vicinity of tungsten mining areas, southern Jiangxi province[J]. Soil and sediment contamination, 38(2):1-15.

[98] 姜冰,王松涛,孙增兵,等,2022.基于不同参比值的土壤重金属潜在生态风险评价[J]. 科学技术与工程,22( 7) : 2964-2971.

[99] JIANG B,WANG ST,SUN ZB,et al.,2022.Potential ecological risk assessment of soil heavy metals based on different reference ratios[J]. Science Technology and Engineering, 22( 7) : 2964-2971.

[100] 史帅航,白甲林,余洋,2022.西南地区某矿产集采区土壤重金属迁移规律及生态风险评价.金属矿,548(2):194-200.

[101] SHI SH, BAI JL, YU Y, 2022. Heavy Metal Migration and Soil Pollution Assessment in an Intensive Mining Area in the Southwest China. Metal mine,548(2):194-200.


引用本文

杨如婷, 江落雁, 张池, 钟嘉劲, 蒋成爱, 基于不同参比值和方法的土壤重金属污染生态风险评估[J]. 资源与环境科学进展, 2025; 4: (1) : 1-15.