参考文献 References
[1] 任宇, 曹文庚, 肖舜禹, 等, 2024. 重金属在土壤中的分布、危害与治理技术研究进展[J]. 中国地质, 51(01): 118-142.
[2] REN Y, CAO W G, XIAO S Y, et al., 2024. Research progress on distribution, harm and control technology of heavy metals in soil[J]. Geology in China, 51(1): 118-142.
[3] 尧一骏. 2016. 我国污染场地治理与风险评估. 环境保护, 44(20): 25-28.
[4] YAO Y J. 2016. Risk assessment and remediation of soil contamination in China. Environmental Protection, 44(20): 25-28.
[5] 王美娥, 丁寿康, 郭观林, 等, 2020. 污染场地土壤生态风险评估研究进展[J]. 应用生态学报, 31(11): 3946-3958.
[6] WANG M E, DING S K, GUO G L, et al., 2020. Advances in ecological risk assessment of soil in contaminated sites. Chinese Journal of Applied Ecology[J], 31(11): 3946-3958.
[7] SHI J D, ZHAO D, REN FT, et al., 2023. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Science of the Total Environment, 871: 161768.
[8] HAKANSON L, 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 14, 975–1001.
[9] 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 31(02): 112-115.
[10] XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of Heavy Metals’Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index[J]. Environmental Science & Technology, 31(02): 112-115.
[11] 张霖琳,金小伟,王业耀, 2020. 土壤污染物的生态毒理效应和风险评估研究进展[J].中国环境监测,36(06):5-13.
[12] ZHANG L L, JIN X W, WANG Y Y, 2020. Research Progress on Ecotoxicological Effects and Risk Assessment of Soil Pollutants[J]. Environmental Monitoring in China, 36(06): 5-13.
[13] 邵元虎, 张卫信, 刘胜杰, 等, 2015. 土壤动物多样性及其生态功能[J]. 生态学报, 35(20): 6614-6625.
[14] SHAO Y H, ZHANG W X, LIU S J, et al., 2015. Diversity and function of soil fauna. Acta Ecologica Sinica, 35(20): 6614-6625.
[15] 生态环境部,2024. 关于征求《生态安全土壤环境基准制定技术指南(征求意见稿)》等三项国家环境保护标准意见的函[EB/OL]. [2024-06-02]. https://www.mee.gov.cn/ xxgk2018/xxgk/xxgk06/201808/t20180803_629807.html.
[16] Ministry of Ecology and Environment. Letter on soliciting opinions on three national environmental protection standards, including the Technical Guidelines for the Formulation of Ecological Safety Soil Environmental Benchmarks (Draft for Comment) [EB/OL]. [2024-06-02]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201808/t20180803_629807.html.
[17] PERSICO F, COULON F , LADYMAN M, et al., 2022. Development of an environmental hazard-based rating assessment for defence-related chemical compounds in ecological soil systems[J]. Environment international, 166:107392.
[18] 鲍士旦,2000. 土壤农化分析[M]. 3版. 北京:中国农业出版社.
[19] BAO S D. Soil and agricultural chemistry analysis[M]. 3rd Edition. Beijing: China Agriculture Press, 2000.
[20] 生态环境部, 2018.土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团.
[21] Ministry of Ecology and Environment, 2018. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618-2018 [S]. Beijing: China Environmental Publishing Group.
[22] 李婷婷, 刘子宁, 贾磊, 等, 2021. 广东韶关地区土壤环境背景值及其影响因素[J]. 地质学刊, 45(03): 254-261.
[23] LI T T, LIU Z N, JIA L, et al., 2021. Analysis on background value of soil elements and influencing factors in Shaoguan, Guangdong Province[J]. Journal of Geology, 45(03): 254-261.
[24] 丁昌峰, 李孝刚, 王兴祥, 2015. 我国两种典型土壤汞的安全阈值研究——以根茎类蔬菜为例[J]. 土壤, 47 (02): 427-434.
[25] DING C F, LI X G, WANG X X, 2015. Food Safety Thresholds of Mercury for Two Typical Soils of China——A Case Study for Rootstalk Vegetables[J]. Soils, 47 (02): 427-434.
[26] HUANG X, LI X, ZHENG L, et al., 2024. Comprehensive assessment of health and ecological risk of cadmium in agricultural soils across China: A tiered framework[J/OL]. Journal of Hazardous Materials, 465: 133111.
[27] 丁昌峰, 周志高, 王玉荣, 等, 2024. 基于生态安全的我国土壤镉环境基准研究[J]. 地学前缘, 31(02): 130-136.
[28] DING C F, ZHOU Z G, WANG Y R, et al., 2024. Environmental criteria of cadmium in soils of China based on ecological safety[J]. Earth Science Frontiers, 31(02): 130-136.
[29] 王晓南, 刘征涛, 王婉华, 等, 2014. 重金属铬(Ⅵ)的生态毒性及其土壤环境基准[J]. 环境科学, 35(08): 3155-3161.
[30] WANG X N, LIU Z T, WANG W H, et al., 2014. Ecotoxicological Effect and Soil Environmental Criteria of the Heavy Metal Chromium(Ⅵ)[J]. Environmental Science, 35(08): 3155-3161.
[31] 张竞元, 王学东, 梁力川,等,2024.土壤中钴的生态安全阈值初步推导[J/OL]. 地学前缘, 1-11[2024-06-02]. https://doi.org/10.13745/j.esf.sf.2023.11.40.
[32] ZHANG J Y, WANG X D, LIANG L C, et al., 2024. Preliminary derivation of ecological safety threshold of cobalt in soil[J/OL]. Earth Science Frontiers, 1-11[2024-06-02]. https://doi.org/10.13745/j.esf.sf.2023.11.40.
[33] 黄兴华, 李勖之, 王国庆, 等, 2022. 保护陆生生态的土壤铜环境基准研究[J]. 中国环境科学, 42(10): 4720-4730.
[34] HUANG X H, LI X Z, WANG G Q, et al., 2022.Study of soil environmental criteria of copper for protection of terrestrial ecosystem[J]. China Environmental Science, 42(10): 4720-4730.
[35] 王小庆, 韦东普, 黄占斌等, 2013. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 33(06): 1787-1794.
[36] Wang X Q, Wei D P, Huang Z B, et al., 2013. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 33(6): 1787-1794.
[37] 鞠鑫, 2016. 锑对不同植物的毒理效应及其土壤生态基准研究[D]. 北京:华北电力大学.
[38] JU X, 2016. The toxicological effects of antimony on different plants and its soil ecological criteria[D]. Beijing: North China Electric Power University
[39] 孙在金, 赵淑婷, 林祥龙, 等, 2018. 基于物种敏感度分布法建立中国土壤中锑的环境基准[J]. 环境科学研究, 31 (04): 774-781.
[40] SUN Z J, ZHAO S T, LIN X L, et al., 2018. Deriving soils environmental criteria of antimony in China by species sensitivity distributions[J]. Research of Environmental Sciences, 31(4): 774-781.
[41] 王小庆, 韦东普, 黄占斌, 等, 2012. 物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J]. 农业环境科学学报, 31(01): 92-98.
[42] WANG X Q, WEI D P, HUANG Z B, et al., 2012. Application of Species Sensitivity Distribution in Deriving of Ecological Thresholds for Nickel in Soils[J]. Journal of Agro-Environment Science, 31(01): 92-98.
[43] 李勖之, 孙丽, 杜俊洋, 等, 2022. 农用地土壤重金属锌的生态安全阈值研究[J]. 环境科学学报, 42(07): 408-420.
[44] LI X Z, SUN L, DU J Y, et al.,2022. Soil ecological safety thresholds for zinc in agricultural land[J]. Acta Scientiae Circumstantiae, 42(7): 408-420.
[45] 林蕾, 2013. 基于不同终点测定土壤中锌的毒性阈值、预测模型及田间验证[D]. 中国农业科学院.
[46] LIN L, 2013. Study of Zn-toxicity thresholds in soils with different bioassay endpoints, its predictive models and field validation[D]. Chinese Academy of Agricultural Sciences.
[47] ZHAO S, QIN L, WANG L, et al.,2022. Ecological risk thresholds for Zn in Chinese soils[J/OL]. Science of The Total Environment, 833: 155182.
[48] 万亚男, 2020. 我国土壤中锌的生态阈值研究[D]. 中国农业科学院.
[49] WANG Y N, 2020. Ecological thresholds for Zinc in Chinese soils[D]. Chinese Academy of Agricultural Sciences.
[50] 李宁, 2016. 基于不同终点测定土壤铅的生态风险阈值及其预测模型[D]. 中国农业科学院.
[51] LI N, 2016. The toxicity thresholds (ECx) of Pb and its predicted models based on various endpoint determination[D]. Chinese Academy of Agricultural Sciences.
[52] 李勖之, 郑丽萍, 张亚, 等, 2021. 应用物种敏感分布法建立铅的生态安全土壤环境基准研究 [J]. 生态毒理学报, 16(01): 107-118.
[53] LI X Z, ZHENG L P, ZHANG Y, et al., 2021. Derivation of ecological safety based soil quality criteria for lead by species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 16(01): 107-118.
[54] QIN L, SUN X, YU L, et al., 2023. Ecological risk threshold for Pb in Chinese soils[J/OL]. Journal of Hazardous Materials, 444: 130418.
[55] 高凡, 王学东, 罗小绒, 等, 2022. 不同性质土壤中钼的植物毒性及预测模型[J]. 农业资源与环境学报, 39(4): 683-689.
[56] GAO F, WANG X D, LUO X R, et al., 2022. Phytotoxicity and prediction models of molybdenum in soils with different properties[J]. Journal of Agricultural Resources and Environment, 39(4): 683-689.
[57] MCGRATH S P, MICO C, ZHAO F J, et al., 2010. Predicting molybdenum toxicity to higher plants: estimation of toxicity threshold values[J]. Environmental Pollution, 158(10):3085-3094.
[58] GESTEL C A M V, BORGMAN E, VERWEIJ R A, et al., 2011. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates[J]. Ecotoxicology & Environmental Safety, 74(1):1-9.
[59] 王亚利,2019. 砷胁迫下蚯蚓的应激响应及对土壤理化性质的影响研究[D]. 上海交通大学.
[60] WANG Y L, 2019. Stress response of earthworm to arsenic pollution and its effects on soil physical and chemical properties[D]. Shanghai Jiaotong University.
[61] 李淳, 朱江, 2018. 砷对赤子爱胜蚓的急性毒性效应研究[J]. 上海环境科学, 37(2): 51-54.
[62] LI C, ZHU J, 2018. A Study on the Acute Toxic Effects of Arsenic on Eisenia fetida[J]. Shanghai Environmental Sciences, 37(2): 51-54.
[63] ZHAO S Q, NI H, LI J, et al.,2023. Ecotoxicity stress and bioaccumulation in Eisenia fetida earthworms exposed to vanadium pentoxide in soil[J]. Environmental Science and Pollution Research, 30(19): 54657-54665.
[64] 王子萱, 陈宏坪, 李明, 等, 2019. 不同土壤中镉对大麦和多年生黑麦草毒性阈值的研究[J]. 土壤, 51(6): 1151-1159.
[65] WANG Z X, CHEN H P, LI M, et al., 2019. Toxicity thresholds of cadmium to barley and perennial ryegrass as determined by root-elongation and growth tests in soils[J]. Soils, 51(6): 1151-1159.
[66] 付平南, 贡晓飞, 罗丽韵, 等, 2020. 不同价态铬和土壤理化性质对大麦根系毒性阈值的影响[J]. 环境科学, 41 (05): 2398-2405.
[67] FU P N, GONG X F, LUO L Y, et al.,2020. Toxicity of chromium to root growth of barley as affected by chromium speciation and soil properties[J]. Environmental Science, 41(05): 2398-2405.
[68] SUN X, QIN L, WANG L, et al., 2022. Aging factor and its prediction models of chromium ecotoxicity in soils with various properties[J/OL]. Science of The Total Environment, 847: 157622.
[69] Ma Y B, MCLAUGHLIN M J, ZHU Y G, et al.,2009. Final Report for Metals in Asia [R]. Beijing: National Natural Science Foundation of China. 23-25.
[70] LI B, ZHANG H, MA Y, et al., 2011. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J/OL]. Ecotoxicology and Environmental Safety, 74(3): 459-466.
[71] MICÓ C, LI H F, ZHAO F J, et al., 2008. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L. ) in different soils[J]. Environmental Pollution, 156(3): 883-890.
[72] 李金瓶, 王学东, 马虹, 等,2020. 土壤外源钴对大麦根伸长的毒害及其预测模型. 农业环境科学学报,39(12): 2771-2778.
[73] LI J P, WANG X D, MA H, et al., 2020. The effect of toxicity of soil supplemented with cobalt on barley root elongation and cobalt toxicity prediction models[J]. Journal of Agro-Environment Science, 39(12): 2771-2778.
[74] QIN L, WANG M, ZHAO S, et al., 2021. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties[J/OL]. Ecotoxicology and Environmental Safety, 228: 112999.
[75] 陈世宝,林蕾,魏威,等,2013. 基于不同测试终点的土壤锌毒性阈值及预测模型[J]. 中国环境科学, 33 (05): 922-930.
[76] CHEN S B, LIN L, WEI W, et al., 2013. Comparative study of Zn-toxicity thresholds in 16 Chinese soils as determined by different bioassay endpoints and its predicted models[J]. China Environmental Science, 33(05): 922-930.
[77] 魏威, 2012. 土壤外源锌的植物毒害主控因子和预测模型研究[D]. 西北农林科技大学.
[78] WEI W, 2012. Zinc phytotoxicity as affected by soil properties and development of a predictive model[D]. Northwest A&F University.
[79] 李丹, 袁涛, 郭广勇, 等, 2007. 我国不同土壤铜的生物可利用性及影响因素[J]. 环境科学与技术, (08): 6-9+115.
[80] LI D, YUAN T, GUO G Y, et al., 2007. Bioavailability and impact of copper in various soils[J]. Environmental Science and Technology, (08): 6-9+115.
[81] QIN L, WANG L, SUN X, et al.,2022. Ecological toxicity (ECx) of Pb and its prediction models in Chinese soils with different physiochemical properties[J/OL]. Science of The Total Environment, 853: 158769.
[82] 李宁, 郭雪雁, 陈世宝, 等,2015. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报,26(07):2177-2182.
[83] LI N, GUO X Y, CHEN S B, et al., 2015. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test[J]. Chinese Journal of Applied Ecology, 26(07): 2177-2182.
[84] POSTHUMA L, SUTER G W, TRAAS T P,2001. Species Sensitivity Distributions in Ecotoxicology[M]. CRC press:5-7.
[85] 张鹏,2020. 基于不同终点的土壤中锑的生态毒性阈值研究[D]. 山西农业大学.
[86] ZHANG P, 2020. Ecological threshold for antimony in soils based on different bioassay endpoints[D]. Shanxi Agricultural University.
[87] LIN X, HE F, SUN Z, et al., 2020. Influences of soil properties and long-time aging on phytotoxicity of antimony to barley root elongation[J]. Environmental Pollution, 262: 114330.
[88] 马建华, 王晓云, 侯千, 等,2011. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究,30(03):486-495.
[89] MA J H, WANG X Y, HOU Q, et al., 2011. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical research, 30(03): 486-495.
[90] 望兆博,任大军,肖宇伦,等, 2023.大冶古铜矿遗址周边农田土壤重金属污染及潜在生态风险评价[J/OL].金属矿, 569(11):290-298.
[91] WANG ZB, REN DJ, XIAO YL, et al. Assessment of heavy metal pollution and potential ecological risk of farmland soil around.
[92] ancient copper mine site in Daye city. Metal mine, 2023,569(11):290-298.
[93] 黄钟霆,易盛炜,陈贝贝,等.2022.典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价.环境科学, 43(2):975-983.
[94] HUANG Z T,YI SW,CHEN BB, et al.,2022. Pollution properties and ecological risk assessment of heavy metals in farmland soils and crops around a typical manganese mining area. Environmental Science, 43(2):975-983.
[95] 李华翔,赵修军,刘应华,等,2022. 冶炼场地土壤中钨空间分布特征及风险评价[J]. 环境工程, 40(1):141-147.
[96] LI HX, ZHAO XJ, LIU YH, et al., 2022. Spatial distribution and risk assessment of tungsten pollution of soil in a smelting site. Environmental engineering, 40(1):141-147.
[97] ZHENG XJ, CHEN M, WANG JF, et al., 2020. Ecological risk assessment of heavy metals in the vicinity of tungsten mining areas, southern Jiangxi province[J]. Soil and sediment contamination, 38(2):1-15.
[98] 姜冰,王松涛,孙增兵,等,2022.基于不同参比值的土壤重金属潜在生态风险评价[J]. 科学技术与工程,22( 7) : 2964-2971.
[99] JIANG B,WANG ST,SUN ZB,et al.,2022.Potential ecological risk assessment of soil heavy metals based on different reference ratios[J]. Science Technology and Engineering, 22( 7) : 2964-2971.
[100] 史帅航,白甲林,余洋,2022.西南地区某矿产集采区土壤重金属迁移规律及生态风险评价.金属矿,548(2):194-200.
[101] SHI SH, BAI JL, YU Y, 2022. Heavy Metal Migration and Soil Pollution Assessment in an Intensive Mining Area in the Southwest China. Metal mine,548(2):194-200.