期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in Resources and Environmental Science. 2025; 4: (3) ; 10-18 ; DOI: 10.12208/j.aes.20250022.

Microcystin removal under groundwater–surface water interactions
地下水地表水相互作用下的微囊藻毒素去除

作者: 苏绎同1, 陈雅柔1, Renee Richer1, 储子仪1, 顾传辉1,2 *

1 昆山杜克大学自然与应用科学部 江苏昆山
2 昆山杜克大学环境研究中心 江苏昆山

*通讯作者: 顾传辉,单位: 昆山杜克大学自然与应用科学部 江苏昆山 昆山杜克大学环境研究中心 江苏昆山;

发布时间: 2025-12-20 总浏览量: 31

摘要

微囊藻毒素(MCs)是一类由蓝藻产生的高毒性化合物,对水域与陆域生态系统均构成风险。河岸缓冲带被广泛认为能削减陆源污染物,但其对河源微囊藻毒素的削减能力仍缺乏研究。本文结合现场监测、实验室土柱试验与微生物群落分析,评估在动态河-地下水交换条件下,河岸带对MCs的去除能力。位于长江口一条感潮河的现场数据揭示了河-地下水双向的交换与河水中的MC侵入河岸带。土柱实验显示,相比保守性氯离子,MC的质量回收率减少约90%,拟合得到的一阶降解速率常数为1.02–1.15 d⁻¹。微生物测序发现河岸土壤中富集了潜在的MC降解菌属(如 Sphingomonas 与 Novosphingomonas)。结果显示河岸带是被忽视的河源MC生物地球化学过滤器。理解MC在河岸体系中的归趋可为流域层面的蓝藻毒素治理提供基于自然的解决方案。

关键词: 微囊藻毒素;地下水地表水相互作用;河岸带;生物降解

Abstract

Microcystins (MCs) are highly toxic cyanobacterial metabolites that pose risks to both aquatic and terrestrial ecosystems. Riparian buffers are widely recognized for attenuating land-derived pollutants, yet their capacity to reduce river-borne microcystins remains underexplored. Integrating field monitoring, laboratory soil-column experiments, and microbial community analyses, we evaluated MC removal in riparian zones under dynamic river–groundwater exchange. Field data from a tidal river near the Yangtze River Estuary reveal bidirectional river–groundwater exchange and intrusion of riverine MC into the riparian corridor. Column experiments showed that, relative to conservative chloride, MC mass recovery decreased by ~90%, with fitted first-order decay rate constants of 1.02–1.15 d⁻¹. Amplicon sequencing indicated enrichment of putative MC-degrading taxa in riparian soils (e.g., Sphingomonas, Novosphingomonas). These results identify riparian zones as an overlooked biogeochemical filter for river-borne MC. Understanding MC fate within riparian systems can inform nature-based solutions for watershed-scale cyanotoxin management.

Key words: Microcystins; Groundwater–surface water interactions; Riparian zone; Biodegradation

参考文献 References

[1] Hautala H, Lamminmäki U, Spoof L, et al. Quantitative PCR detection and improved sample preparation of microcystin-producing Anabaena, Microcystis and Planktothrix. Ecotoxicology and Environmental Safety. 2013;87:49–56. 

[2] Welker M, Von Döhren H. Cyanobacterial peptides — Nature’s own combinatorial biosynthesis. FEMS Microbiol Rev. 2006;30:530–63. 

[3] Cao L, Huang F, Massey IY, et al. Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins. 2019;11:482. 

[4] Schmidt J, Wilhelm S, Boyer G. The Fate of Microcystins in the Environment and Challenges for Monitoring. Toxins. 2014;6:3354–87. 

[5] Chen J, Xie P, Li L, et al. First Identification of the Hepatotoxic Microcystins in the Serum of a Chronically Exposed Human Population Together with Indication of Hepatocellular Damage. Toxicological Sciences. 2009; 108:81–9. 

[6] Greer B, Meneely JP, Elliott CT. Uptake and accumulation of Microcystin-LR based on exposure through drinking water: An animal model assessing the human health risk. Sci Rep. 2018;8:4913. 

[7] Funari E, Testai E. Human Health Risk Assessment Related to Cyanotoxins Exposure. Critical Reviews in Toxicology. 2008;38:97–125. 

[8] Phlips EJ, Badylak S, Milbrandt EC, et al. Fate of a toxic Microcystis aeruginosa bloom introduced into a subtropical estuary from a flow-managed canal and management implications. Journal of Environmental Management. 2025; 375:124362. 

[9] Yousaf M, Wang J, Rehman A, et al. Microcystins in transitional and marine ecosystems: Source categories, distribution patterns, and ecological impacts. Marine Pollution Bulletin. 2025;220:118432. 

[10] Zhang J, Lu Q, Ding Q, et al. A Novel and Native Microcystin-Degrading Bacterium of Sphingopyxis sp. Isolated from Lake Taihu. IJERPH. 2017;14:1187.

[11] Svirčev Z, Lalić D, Bojadžija Savić G, et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol. 2019;93:2429–81.

[12] Corbel S, Mougin C, Bouaïcha N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere. 2014;96:1–15. 

[13] Zhang S, Sha Y, Tang Y, et al. Laboratory-Simulated Inhibitory Effects of the Floating-Bed Plants on Microcystis aeruginosa and Their Microbial Communities’ Responses to Microcystins. Microorganisms. 2024;12:2035. 

[14] Thyssen LA, Martinez I Quer A, Arias CA, et al. Constructed wetland mesocosms improve the biodegradation of microcystin-LR and cylindrospermopsin by indigenous bacterial consortia. Harmful Algae. 2024;131:102549.

[15] Wu X, Wang C, Tian C, et al. Evaluation of the potential of anoxic biodegradation of intracellular and dissolved microcystins in lake sediments. Journal of Hazardous Materials. 2015;286:395–401. 

[16] Cui G, Su X, Zheng S, et al. Hydrological and biogeochemical processes controlling riparian groundwater quantity and quality during riverbank filtration. Environmental Pollution. 2024;350:124020. 

[17] González E, Felipe-Lucia MR, Bourgeois B, et al. Integrative conservation of riparian zones. Biological Conservation. 2017;211:20–9. 

[18] Wang J, Chen J, Jin Z, et al. Simultaneous removal of phosphate and ammonium nitrogen from agricultural runoff by amending soil in lakeside zone of Karst area, Southern China. Agriculture, Ecosystems & Environment. 2020;289: 106745. 

[19] Zhao H, Zheng J, Zhu Y, et al. Risk Assessment of Nonpoint Source Pollution in the Huaihe River Basin. Water. 2022;14:3505. 

[20] Satkowski LE, Goyne KW, Anderson SH, et al. Imidacloprid Sorption and Transport in Cropland, Grass Buffer, and Riparian Buffer Soils. Vadose Zone Journal. 2018;17:1–12. 

[21] Aguiar TR, Bortolozo FR, Hansel FA, et al. Riparian buffer zones as pesticide filters of no-till crops. Environ Sci Pollut Res. 2015;22:10618–26. 

[22] Lin C, Lerch RN, Goyne KW, et al. Reducing Herbicides and Veterinary Antibiotics Losses from Agroecosystems Using Vegetative Buffers. J environ qual. 2011;40:791–9. 

[23] Li P, McGarr JT, Moeini F, et al. Sensitivity Analysis and Uncertainty Quantification of PFAS Fate and Transport in Heterogeneous Riparian Sediments. ACS Earth Space Chem. 2024;8:1560–73. 

[24] Tsuji Kiyomi, Naito Shoji, Kondo Fumio, et al. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environ Sci Technol. 1994;28:173–7.

[25] Wang L, Yi Z, Zhang P, et al. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. Journal of Environmental Management. 2024;365:121707. 

[26] Tang S, Zhang L, Zhu H, et al. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water. Science of The Total Environment. 2024;937:173370. 

[27] Giaramida L, Manage PM, Edwards C, et al. Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. International Biodeterioration & Biodegradation. 2013;84:111–7. 

[28] Dziga D, Wasylewski M, Wladyka B, et al. Microbial Degradation of Microcystins. Chem Res Toxicol. 2013;26: 841–52. 

[29] Giaramida L, Manage PM, Edwards C, et al. Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. International Biodeterioration & Biodegradation. 2013;84:111–7. 

[30] Chaffin JD, Westrick JA, Furr E, et al. Quantification of microcystin production and biodegradation rates in the western basin of Lake Erie. Limnology & Oceanography. 2022;67:1470–83. 

[31] Ding Q, Liu K, Xu K, et al. Further Understanding of Degradation Pathways of Microcystin-LR by an Indigenous Sphingopyxis sp. in Environmentally Relevant Pollution Concentrations. Toxins. 2018;10:536. 

[32] Chen X, Yang X, Yang L, et al. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Research. 2010;44:1884–92. 

[33] Shao K, Zhang L, Wang Y, et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Science of The Total Environment. 2014;488–489:236–42. 

[34] Bourne DG, Jones GJ, Blakeley RL, et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol. 1996;62:4086–94. 

[35] Dexter J, McCormick AJ, Fu P, et al. Microcystinase – a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. Water Research. 2021;189:116646. 

[36] Zhou Y, Wang Q, Xiao G, et al. Effects of the catastrophic 2020 Yangtze River seasonal floods on microcystins and environmental conditions in Three Gorges Reservoir Area, China. Front Microbiol. 2024;15:1380668. 

[37] Xie L, Hagar J, Rediske RR, et al. The influence of environmental conditions and hydrologic connectivity on cyanobacteria assemblages in two drowned river mouth lakes. Journal of Great Lakes Research. 2011;37:470–9. 

[38] Munusamy T, Hu Y-L, Lee J-F. Adsorption and photodegradation of microcystin-LR onto sediments collected from reservoirs and rivers in Taiwan: a laboratory study to investigate the fate, transfer, and degradation of microcystin-LR. Environ Sci Pollut Res. 2012;19:2390–9. 


引用本文

苏绎同, 陈雅柔, ReneeRicher, 储子仪, 顾传辉, 地下水地表水相互作用下的微囊藻毒素去除[J]. 资源与环境科学进展, 2025; 4: (3) : 10-18.